Search results for "Dice coefficient"

showing 8 items of 8 documents

Hidden Markov Random Fields and Direct Search Methods for Medical Image Segmentation

2016

The goal of image segmentation is to simplify the representation of an image to items meaningful and easier to analyze. Medical image segmentation is one of the fundamental problems in image processing field. It aims to provide a crucial decision support to physicians. There is no one way to perform the segmentation. There are several methods based on HMRF. Hidden Markov Random Fields (HMRF) constitute an elegant way to model the problem of segmentation. This modelling leads to the minimization of an energy function. In this paper we investigate direct search methods that are Nelder-Mead and Torczon methods to solve this optimization problem. The quality of segmentation is evaluated on grou…

Segmentation-based object categorizationbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationImage processing02 engineering and technologyImage segmentationMachine learningcomputer.software_genreSørensen–Dice coefficient0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSegmentationArtificial intelligenceHidden Markov random fieldHidden Markov modelbusinesscomputerMathematicsProceedings of the 5th International Conference on Pattern Recognition Applications and Methods
researchProduct

Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation

2018

International audience; Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. …

Dice coefficient criterionComputer scienceBrain image segmentation02 engineering and technologyMR-images[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Theoretical Computer Science03 medical and health sciences0302 clinical medicineArtificial Intelligence0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]SegmentationBrain magnetic resonance imagingHidden Markov modelRandom fieldbusiness.industryBroyden-Fletcher-Goldfarb-Shanno algorithmPattern recognitionImage segmentationhidden Markov random fieldMinimization3. Good healthHomogeneousBroyden–Fletcher–Goldfarb–Shanno algorithm020201 artificial intelligence & image processingAutomatic segmentationArtificial intelligenceHidden Markov random fieldbusiness030217 neurology & neurosurgerySoftwareJournal of Experimental & Theoretical Artificial Intelligence
researchProduct

The reliability of continuous brain responses during naturalistic listening to music

2015

Low-level (timbral) and high-level (tonal and rhythmical) musical features during continuous listening to music, studied by functional magnetic resonance imaging (fMRI), have been shown to elicit large-scale responses in cognitive, motor, and limbic brain networks. Using a similar methodological approach and a similar group of participants, we aimed to study the replicability of previous findings. Participants' fMRI responses during continuous listening of a tango Nuevo piece were correlated voxelwise against the time series of a set of perceptually validated musical features computationally extracted from the music. The replicability of previous results and the present study was assessed b…

MalePoison controlBrain mappingNOISE0302 clinical medicineInterclass correlationMusical featuresBrain Mappingmedicine.diagnostic_testResearch Support Non-U.S. Gov't05 social sciencesBrainCognitionReliabilityMagnetic Resonance ImaginghumanitiesVARIABILITYNeurologyNEUROSCIENCEFMRIta6131Naturalistic paradigmAuditory PerceptionFemaleTEST-RETEST RELIABILITYPsychologypsychological phenomena and processesCognitive psychologyAdultCognitive NeuroscienceLATERALIZATIONbehavioral disciplines and activitiesta3112050105 experimental psychologyLateralization of brain function03 medical and health sciencesTIMBREYoung AdultWORKING-MEMORYmedicineJournal ArticleHumans0501 psychology and cognitive sciencesActive listeningSet (psychology)ATTENTIONReproducibility of ResultsDice coefficientFunctional magnetic resonance imaging (fMRI)Acoustic StimulationFunctional magnetic resonance imagingNeuroscienceTimbrehuman activities030217 neurology & neurosurgeryMusicAUDITORY-CORTEXNeuroImage
researchProduct

Hidden Markov Random Field model and BFGS algorithm for Brain Image Segmentation

2016

Brain MR images segmentation has attracted a particular focus in medical imaging. The automatic image analysis and interpretation became a necessity. Segmentation is one of the key operations to provide a crucial decision support to physicians. Its goal is to simplify the representation of an image into items meaningful and easier to analyze. Hidden Markov Random Fields (HMRF) provide an elegant way to model the segmentation problem. This model leads to the minimization problem of a function. BFGS (Broyden-Fletcher-Goldfarb-Shanno algorithm) is one of the most powerful methods to solve unconstrained optimization problem. This paper presents how we combine HMRF and BFGS to achieve a good seg…

business.industrySegmentation-based object categorizationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationPattern recognitionImage segmentationMachine learningcomputer.software_genreSørensen–Dice coefficientBroyden–Fletcher–Goldfarb–Shanno algorithmSegmentationArtificial intelligenceHidden Markov random fieldbusinessHidden Markov modelcomputerMathematicsProceedings of the Mediterranean Conference on Pattern Recognition and Artificial Intelligence
researchProduct

Conjugate Gradient Method for Brain Magnetic Resonance Images Segmentation

2018

Part 8: Pattern Recognition and Image Processing; International audience; Image segmentation is the process of partitioning the image into regions of interest in order to provide a meaningful representation of information. Nowadays, segmentation has become a necessity in many practical medical imaging methods as locating tumors and diseases. Hidden Markov Random Field model is one of several techniques used in image segmentation. It provides an elegant way to model the segmentation process. This modeling leads to the minimization of an objective function. Conjugate Gradient algorithm (CG) is one of the best known optimization techniques. This paper proposes the use of the nonlinear Conjugat…

Ground truthComputer sciencebusiness.industryThe Conjugate Gradient algorithmComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONBrain image segmentationPattern recognition02 engineering and technologyImage segmentationImage (mathematics)Nonlinear conjugate gradient method03 medical and health sciences0302 clinical medicineDice Coefficient metricHidden Markov Random FieldConjugate gradient methodComputer Science::Computer Vision and Pattern Recognition0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSegmentation[INFO]Computer Science [cs]Artificial intelligencebusinessHidden Markov random field030217 neurology & neurosurgery
researchProduct

Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging

2019

Longitudinal analysis of white matter lesion changes on serial MRI has become an important parameter to study diseases with white-matter lesions. Here, we build on earlier work on cross-sectional lesion segmentation; we present a fully automatic pipeline for serial analysis of FLAIR-hyperintense white matter lesions. Our algorithm requires three-dimensional gradient echo T1- and FLAIR- weighted images at 3 Tesla as well as available cross-sectional lesion segmentations of both time points. Preprocessing steps include lesion filling and intrasubject registration. For segmentation of lesion changes, initial lesion maps of different time points are fused; herein changes in intensity are analyz…

AdultMaleMultiple SclerosisCognitive Neuroscience610Fluid-attenuated inversion recoverylcsh:Computer applications to medicine. Medical informaticscomputer.software_genrelcsh:RC346-429050105 experimental psychologyCohort StudiesWhite matterLesionYoung Adult03 medical and health sciences0302 clinical medicineSørensen–Dice coefficientVoxelmedicineHumans0501 psychology and cognitive sciencesRadiology Nuclear Medicine and imagingSegmentationLongitudinal Studieslcsh:Neurology. Diseases of the nervous systemmedicine.diagnostic_testbusiness.industry05 social sciencesRegular ArticleMagnetic resonance imagingLesion segmentation; Magnetic resonance imaging; Multiple sclerosis; White matter lesionsMiddle AgedMagnetic Resonance ImagingHyperintensityddc:Cross-Sectional Studiesmedicine.anatomical_structureNeurologylcsh:R858-859.7FemaleNeurology (clinical)medicine.symptombusinessNuclear medicinecomputer030217 neurology & neurosurgeryFollow-Up StudiesNeuroImage: Clinical
researchProduct

Segmentation Integrating Watershed and Shape Priors Applied to Cardiac Delayed Enhancement MR Images

2017

International audience; Background: In recent years, there has been a rapid rise in the use of shape priors applied to segmentation process of medical images. Previous approaches on left ventricle segmentation from Delayed-Enhancement Magnetic Resonance Imaging (DE-MRI) have focused on the extraction of myocardium or just diseased region in short axis orientation. However these studies did not take into account the segmentation of non-diseased myocardium from DE-MRI. The segmentation of non-diseased myocardium from DE-MRI, has some useful applications. For instance it can simplify the PET-MR registration process.Methods: This paper presents a novel semi-automatic segmentation method of non-…

DE-MRIComputer science[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/ImagingBiomedical EngineeringBiophysicsScale-space segmentation030204 cardiovascular system & hematology030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineSegmentationSørensen–Dice coefficientInformationMagnetic-Resonance ImagesSegmentationComputer vision[ SDV.IB ] Life Sciences [q-bio]/BioengineeringCardiac imaging[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/ImagingOrientation (computer vision)business.industryImage segmentationGold standard (test)Computer aided diagnosisComputer-aided diagnosisGraph Cuts[SDV.IB]Life Sciences [q-bio]/BioengineeringArtificial intelligencebusinessShape priorsCardiac imaging
researchProduct

Convolutional Neural Network With Shape Prior Applied to Cardiac MRI Segmentation.

2019

In this paper, we present a novel convolutional neural network architecture to segment images from a series of short-axis cardiac magnetic resonance slices (CMRI). The proposed model is an extension of the U-net that embeds a cardiac shape prior and involves a loss function tailored to the cardiac anatomy. Since the shape prior is computed offline only once, the execution of our model is not limited by its calculation. Our system takes as input raw magnetic resonance images, requires no manual preprocessing or image cropping and is trained to segment the endocardium and epicardium of the left ventricle, the endocardium of the right ventricle, as well as the center of the left ventricle. Wit…

Databases FactualComputer scienceHealth InformaticsImage processingConvolutional neural network030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineHealth Information ManagementSørensen–Dice coefficientImage Processing Computer-AssistedHumansElectrical and Electronic EngineeringArtificial neural networkbusiness.industryMedical image computingCenter (category theory)Pattern recognitionHeartImage segmentationMagnetic Resonance ImagingComputer Science ApplicationsCardiac Imaging TechniquesHausdorff distancecardiovascular systemArtificial intelligenceNeural Networks Computerbusiness030217 neurology & neurosurgeryIEEE journal of biomedical and health informatics
researchProduct